创见|实干|卓越
与光同程,做民族仪器企业

氙灯xenon light source

Microsolar 300氙灯光源

Microsolar 300 Xenon lamp source

产品中心:氙灯品牌:泊菲莱浏览量:8480
Microsolar300 氙灯光源可实现高能量密度、长时间连续照射;具有恒定电流的输出模式,可确保氙灯光源的供电功率恒定,且具有综合的热管理系统,采用全新的铜、铝结合散热结构,精心优化的轴向散热设计,与关机风扇散热延时、温度传感器监测控制等多重手段结合,散热效果极佳,使氙灯光源箱体更为小巧灵活,获得了优良的综合性能。
  • 产品介绍
  • 应用领域
  • 文献
  • 技术维护

关键特征

● 具有恒光辐照度输出(光控)和恒电流输出(程控)两种工作模式;

● 采用光学光反馈技术,实现光强的长期稳定输出;

● 采用液晶显示屏,显示相对辐照值、灯泡寿命计时;

● 具有过载过流保护,风扇延时等多种保护功能。

 

应用领域

▲特别适用   ●较为适用  ○可以使用

▲ 光催化分解水制氢/氧(长周期)       ▲ 光催化全分解水(长周期)       ▲ PEC光电化学 

● 光降解气体污染物(如VOCs 、甲醛、氮氧化物、硫氧化物等)

● 光降解液体污染物(如染料、苯及苯系物等)

○ 光催化CO2还原       ○ 光合成       ○ 膜光催化       ○ 光致变色

 

六大优势

  • Microsolar300 氙灯光源,应用太阳模拟器核心技术(TSCS)的陶瓷氙灯光源产品,让实验更准确、更可信、更可靠,可重复性与可对比性也得到了质的提高! 

  • Microsolar300 氙灯光源具有恒定电流的输出模式,可确保氙灯光源的供电功率恒定。同时Microsolar300 氙灯光源内置光学光反馈系统,开启恒光辐照度输出模式后,可根据使用者设定的辐照值,实时检测氙灯光源的输出情况并自动进行辐照强度的调节,在相对时间内使辐照强度平均数值更进准的控制在设定数值内,提高实验精准性。 

  • Microsolar300 氙灯光源,可实现高能量密度、长时间连续照射。结合各种滤光片组合后,可实现窄波段的催化剂改进效果评价及宽带通总体催化效果评价。同时能够结合多种反应器(系统),完成固、液、气相的在线及离线分析实验。Microsolar300 氙灯光源可以将研究范围拓展至大气层外的太阳光谱。 

  • Microsolar300 氙灯光源,在设计中采用微处理器技术,与程序化全数字的电路管理。该系统的光输出可沿光轴方向360°旋转,实现氙灯光源的水平与垂直照射方式。高集中型氙灯光源箱,可满足小空间内的多方向照射实验的需求。 

  • Microsolar300 氙灯光源,具有综合的热管理系统,采用全新的铜、铝结合散热结构,精心优化的轴向散热设计,与关机风扇散热延时、温度传感器监测控制等多重手段结合,散热效果极佳,使氙灯光源箱体更为小巧灵活,获得了优良的综合性能。 

  • Microsolar300 氙灯光源基于优秀的散热设计,有效延长了氙灯光源的使用寿命,并提高发光效率。同时液晶显示屏上会显示氙灯的累计使用时间。

 

光输出特性

总光功率

● 50 W,可见区19.6 W,紫外区2.6 W

光谱范围

● 320~780 nm (可拓展至2500 nm)

配合滤光片

● 紫外光区,可见光区,近红外光区及窄带光

光源发散角

● 平均6°

光斑直径

● 依照射距离30~60 mm

 

光源稳定性

● 直接测量光输出变化的精密光学光反馈系统

● 长周期辐照不稳定性≤±3%(8 h)

● 基于微型CPU的集中数字化供电管理控制

● 实时相对辐照值显示(相对值),定时功能

 

安全性

● 灯箱 - 电源连接线缆无高压传输特性、风扇故障保护,风扇关机延时、过载过流自动断电防护功能

● 一种基于集成式氙灯的散热结构

 

控制方式

工作模式

● 程控模式,光控模式

电流

● 21 A

 灯泡(耗材)使用寿命

>1000 h( 满足光催化正常条件下的光强度要求 )

 

基础参数

灯泡功率

● 300 W

功率调整范围

● 150 W~300 W

电源纹波

● 200 mVp-p (峰-峰值)

电源纹波

● 数字电流显示

图表1.jpg

代表文献

i澳洲国立大学大学殷宗友团队引用Microsolar300氙灯.png

清华大学李亚栋团队引用Microsolar300氙灯.png

中科院化学所盛桦团队引用Microsolar300氙灯.png

  • 光催化分解水制氢/氧(长周期)
  • 光催化全分解水(长周期)
  • PEC光电化学
  • 光降解气体污染物
  • 光降解液体污染物
  • 光催化CO2还原
  • 光合成
  • 膜光催化
  • 光致变色
  • [1] Han Tong, Peng Qing. Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. Nature Communications, 2021, 12: 4952.
  • [2] Li Yinyin, Xie Tengfeng. Interface engineering Z-scheme Ti-Fe2O3/In2O3 photoanode for highly efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2021, 290: 120058.
  • [3] Shu Chang, Jiang Jiaxing. Boosting the photocatalytic hydrogen evolution activity for D-pi-A conjugated microporous polymers by statistical copolymerization. Advanced Materials, 2021, 33: e2008498.
  • [4] Wang Wei, Sheng Hua. Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II). Journal of the American chemical society, 2021, 143: 2984.
  • [5] X. Zhang, L. Lin, D. Qu, et al., Boosting visible-light driven solar-fuel production over g-C3N4/tetra(4-carboxyphenyl)porphyrin iron(III) chloride hybrid photocatalyst via incorporation with carbon dots, Applied Catalysis B: Environmental, 2020, 265, 118595.
  • [6] L. Wang, T. Nakajima, Y. Zhang, Simultaneous reduction of surface, bulk, and interface recombination for Au nanoparticle-embedded hematite nanorod photoanodes toward efficient water splitting, Journal of Materials Chemistry A, 2019, 7, 5258-5265.
  • [7] H. Liu, L. Li, C. Guo, et al., Thickness-dependent carrier separation in Bi2Fe4O9 nanoplates with enhanced photocatalytic water oxidation, Chemical Engineering Journal, 2020, 385, 123929.
  • [8] Y. Sheng, H. Miao, J. Jing, et al., Perylene diimide anchored graphene 3D structure via π-π interaction for enhanced photoelectrochemical degradation performances, Applied Catalysis B: Environmental, 2020, 272, 118897.
  • [9] Lei Wanying, Liu Minghua. Hybrid 0D–2D black phosphorus quantum dots–graphitic carbon nitride nanosheets for efficient hydrogen evolution. Nano Energy, 2018, 50: 552.
  • [10] Chang Xiaoxia, Gong Jinlong. Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angewandte Chemie International Edition, 2016, 55: 8840.
  • [11]Chang Xiaoxia, Gong Jinlong. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. Journal of the American chemical society, 2015, 137: 8356.
  • [12] Molten-Salt Electrochemical Biorefinery for Carbon-Neutral Utilization of Biomass J. Mater. Chem. A, 2021, DOI: 10.1039/D1TA09498J.
  • [13] Tong Han, Kaian Sun, Xing Cao et. al. Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. Nat. Commun. 2021, 12, 4954.
  • [14] Sandra Elizabeth Saji, Haijiao Lu, Ziyang Lu, Adam Carroll, and Zongyou Yin. An Experimentally Verified LC-MS Protocol toward an Economical, Reliable, and Quantitative Isotopic Analysis in Nitrogen Reduction Reactions Small methods 2021, 5, 2000694.
  • [15] Nasir Uddin, Julien Langley, Chao Zhang, Alfred K.K. Fung, Haijao Lu, Xinmao Yin, Jingying Liu, Zhichen Wan, Hieu T. Nguyen, Yunguo Li, Nicholas Cox, Andrew T. S. Wee, Qiaoling Bao, Shibo Xi, Dmitri Golberg, Michelle L. Coote, Zongyou Yin. Zero-emission multivalorization of light alcohols with self-separable pure H2 fuel. Applied Catalysis B: Environmental 2021, 292, 120212.
  • [16] Chang Shu, Chong Zhang, Jiaxing Jiang et. al. Boosting the Photocatalytic Hydrogen Evolution Activity for D-π-A Conjugated Microporous Polymers by Statistical Copolymerization. Advanced Materials 2021, DOI: 10.1002/adma.202008498.
  • [17] Wei Wang, Chaoyuan Deng, Shijie Xie, Yangfan Li, Wanyi Zhang, Hua Sheng, Chuncheng Chen, and Jincai Zhao. Photocatalytic C-C Coupling from Carbon Dioxide Reduction on Copper Oxide with Mixed-Valence Copper(I)/Copper(II). J. Am. Chem. Soc., DOI: 10.1021/jacs.1c00206.
  • [18] Jun Luo, Yani Liu, Chengyang Feng, Changzheng Fan, Lin Tang, Guangming Zeng, Ling-Ling Wang, Jiajia Wang and Xiang Tang. Joint Connection of Experiment and Simulation for Photocatalytic Hydrogen Evolution: Strength, Weakness, Validation and Complementarity. Journal of Materials Chemistry A 2021.
  • [19] Cheng Huang, Sirong Zou, Ye Liu, Shilin Zhang, Qingqing Jiang, Tengfei Zhou,* Sen Xin,* and Juncheng Hu*. Surface Reconstruction-Associated Partially Amorphized Bismuth Oxychloride for Boosted Photocatalytic Water Oxidation. ACS Appl. Mater. Interfaces. Publication Date (Web):January 21, 2021,DOI: 10.1021/acsami.0c20338.
  • [20] Shengbo Zhang, Mei Li, Lisheng Li, Xiao Liu, Qingfeng Ge, Hua Wang et. al. Visible-Light-Driven Multichannel Regulation of Local Electron Density to Accelerate Activation of O-H and B-H Bonds for Ammonia Borane Hydrolysis. ACS Catalysis 2020, 10, 14903-14915.
  • [21] Yuan-Zhe Cheng , Wenyan Ji , Xianxin Wu , Xuesong Ding , Xin-Feng Liu , BaoHang,Persistent radical cation sp2 carbon-covalent organic framework for photocatalytic oxidative organic transformations,Applied Catalysis B: Environmental 306 (2022) 121110
  • [22] Zhaobo Fan, Xin      Guo      *, Mengxue Yang, Zhiliang Jin#, Mechanochemical preparation and application of graphdiyne coupled with CdSe nanoparticles for efficient photocatalytic hydrogen production, Chinese Journal of Catalysis, 2022, 43, 2708–2719.
  • [23] Qiao Wang, Yiting. Cao, Yuemi Yu et. al. Enhanced visible-light driven photocatalytic degradation of bisphenol A by tuning electronic structure of Bi/BiOBr. Chemosphere 2022, 308: 136276.
相关产品推荐